Multiperiodic multifractal martingale measures

نویسندگان

  • J. Barral
  • M.-O. Coppens
چکیده

A nonnegative 1-periodic multifractal measure on R is obtained as infinite random product of harmonics of a 1-periodic function W(t). Such infinite products are statistically self-affine and generalize certain Riesz products with random phases. They are martingale structures, therefore converge. The criterion on W for nondegeneracy is provided. It differs completely from those for other known random measures constructed as martingale limits of multiplicative processes. In particular, it is very sensitive to small changes in W(t). When these infinite products are interpreted in the framework of thermodynamic formalism for random transformations, logW is a potential function when W > 0. For regular enough potentials, in case of degeneracy, the natural normalization makes the sequence of measures converge. Moreover, this normalization is neutral for nondegenerate martingales. The multifractal analysis of the limit martingale measure is performed for a class of potential functions having a dense countable set of jump points.  2003 Elsevier SAS. All rights reserved. Résumé On construit sur R une mesure aléatoire positive 1-périodique comme limite d’une suite de mesures aléatoires dont les densités sont des produits d’harmoniques d’une fonction 1-périodique W . Les mesures « produits infinis » ainsi obtenues sont statistiquement auto-affines. Elles généralisent certains produits de Riesz avec phases. Elles existent parce que la suite des densités est une martingale. On obtient la CNS sur W pour que la limite soit non dégénérée. Cette condition est très différente de celle obtenue pour les autres mesures connues comme limites de processus multiplicatifs de nature martingale. En particulier, elle est très sensible à de petites perturbations de W . Plaçant ces produits infinis dans le contexte du formalisme thermodynamique pour des transformations aléa* Corresponding author. E-mail addresses: [email protected] (J. Barral), [email protected] (M.-O. Coppens), [email protected], [email protected] (B.B. Mandelbrot). 1 With O. Meunier assistance for the numerical simulations. 0021-7824/$ – see front matter  2003 Elsevier SAS. All rights reserved. doi:10.1016/S0021-7824(03)00035-7 1556 J. Barral et al. / J. Math. Pures Appl. 82 (2003) 1555–1589 toires, logW est un potentiel lorsque W > 0. Pour les potentiels assez réguliers donnant lieu à une limite dégénérée, la normalisation naturelle rend la suite de mesures convergente ; elle ne modifie pas les martingales non dégénérées. L’analyse multifractale des mesures limites non dégénérées est obtenue pour une classe de potentiels présentant un ensemble dense de points de saut.  2003 Elsevier SAS. All rights reserved. MSC: 28A80; 37H15; 60G10; 60G18; 60G42; 60G57

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of Signed Multiplicative Cascades

Positive T -martingales were developed as a general framework that extends the positive measure-valued martingales and are meant to model intermittent turbulence. We extend their scope by allowing the martingale to take complex values. We focus on martingales constructed on the interval T = [0, 1], and replace random measures by random functions. We specify a large class of such martingales, on...

متن کامل

Multifractal spectra and precise rates of decay in homogeneous fragmentations

We consider a mass-conservative fragmentation of the unit interval. Motivated by a result of Berestycki [3], the main purpose of this work is to specify the Hausdorff dimension of the set of locations having exactly an exponential decay. The study relies on an additive martingale which arises naturally in this setting, and a class of Lévy processes constrained to stay in a finite interval.

متن کامل

Martingale measures for the geometric Lévy process models

The equivalent martingale measures for the geometric Lévy processes are investigated. They are separated to two groups. One is the group of martingale measures which are obtained by Esscher transform. The other one is such group that are obtained as the minimal distance martingale measures. We try to obtain the explicit forms of the martingale measures, and we compare the properties of the mart...

متن کامل

New relative multifractal dimension measures

This paper introduces a new class of fractal dimension measures which we call relative multifractal measures. The relative multifractal measures developed are formed through a melding of the Rényi dimension spectrum, which is based on the Rényi generalized entropy, and relative entropy as given with the Kullback-Leibler distance. This new class of multifractal measures is then used to find the ...

متن کامل

Stochastic orders in dynamic reinsurance markets

We consider a dynamic reinsurance market, where the traded risk process is driven by a jump-diffusion and where claim amounts are unbounded. These markets are known to be incomplete, and there are typically infinitely many martingale measures. In this case, no-arbitrage pricing theory can typically only provide wide bounds on prices of reinsurance claims. Optimal martingale measures such as the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003